
Abstract
This research project aims to provide a system for capturing datasets to be used in the evaluation and testing of dense
stereo and optical flow computer vision algorithms. The collected datasets will be constituent of high-resolution ambient
images captured by smartphones and ground-truth depth maps generated by a structured lighting system. They will be
published as the next generation of the well-known Middlebury Stereo Vision benchmarks, and are intended to advance
stereo and optical flow vision research by supplying highly accurate ground truth depth maps of static indoor scenes.

The main MobileLighting control program is written in Swift and C++ for macOS. It coordinates the different devices used
for scene capture, including numerous projectors used to cast structured lighting onto the scene, a robot arm which moves
the smartphone, and an iOS app (also written in Swift) which captures photos and IMU data.

To enable repeatable photo and video capture from highly customizable viewpoints and trajectories, the smartphone is
mounted on the head of a UR5 robot arm. The arm aims to reproduce actual human arm trajectories recorded with
SteamVR using an HTC VIVE tracker. After capture, the realistic kinetic data is smoothed and numerous reference points
are chosen along the focal point’s path. These trajectories are then loaded onto a Rosvita control server, which mediates
communication between the mac control program and the robot.

Once the structured light images and ambient data have been collected in coordination with the projectors, robot, and
smartphone, the mac program processes the image data to produce precise depth maps of the scene. In order to make the
ground truth data as accurate as possible, the program produces camera calibration matrices to correct warping from the
capture device’s lens and differences in the relative angle of each viewpoint. These matrices are generated by detecting, in
calibration images taken by the system, a custom version of AruCo barcode patterns printed in documented intervals on
flat boards.

Motivation

Research in multiview stereo vision and optical flow vision is held back by the absence of
precise methods for evaluating the accuracy of different algorithms.

This project will fill that void by providing diverse datasets with subpixel accurate ground
truth depth maps which researchers will be able to compare the results of their algorithms
against.

The input (ambient) images provided will be true to modern mobile use cases, with images
captured by mobile phones under a variety of different lighting conditions.

Generating High Quality Mobile
Image Datasets for the Evaluation
of Computer Vision Algorithms

Ground Truth Calibration Problem
One of the major components required
of the finished datasets is highly
accurate ground truth depth
information. There are a number of
highly accurate systems available for 3D
scanning. However, calibrating the
output of any of these systems for
comparison with the output of
algorithms run on images from a camera
can be daunting, especially when
accounting for the relative location of
depth sensors versus cameras.

Structured Lighting
To avoid the ground truth calibration problem, this system uses the same sensor (the
smartphone camera) to obtain both ground truth depth information and stereo vision input
images. In order to acquire ground truth, the program uses a ”structured lighting” system
which projects binary patterns onto the scene to get a unique pixel code for each point. The
pixel codes are then compared between views; the more a pixel moves, the closer the
surface is to the camera.

Fig. 2: example of extrinsic calibration
between camera and depth scanner that we

avoid

Fig. 3: projecting structured
lighting onto a scene

Fig. 4: comparing 2D codes of points on
image to extract depth information

Ground Truth

Tiansheng Sun
Camera calibration,
realistic trajectory
recording

Toby Weed
Control program,
structured lighting,
image processing

Guanghan Pan
Robot control,
realistic trajectory
recording, web scripts

Control and Coordination
The program is controlled from the central
command-line application, MobileLighting
Mac. MobileLighting Mac is responsible for
commanding the smartphone for image
capture, projecting structured lighting from the
projectors (attached via a switcher box),
commanding the UR5 robot via the Rosvita
server, running calibration, processing the
images, and recording all relevant scene data.
MobileLighting Mac connects to
MobileLighting iPhone and MLRobotControl
wirelessly using network sockets.

Image capture occurs on a device running an
iOS app, MobileLighting iPhone, which takes
photos under various exposures and does
some image processing automatically.

The movement of robot arm is controlled by
the socket server, MLRobotControl, which is
responsible for moving robot to specified
viewpoint, executing pre-defined trajectories
and sending the status of robot back to
MobileLighting Mac.

MobileLighting Mac
• Command line tool
• Coordinates between different parts of

the system, does image processing and
calibration, records data.

• Written in Swift, C++, and Objective-C
using Xcode

MobileLighting iPhone
• iOS application
• Responsible for image capture and some

image processing.
• Written in Swift using Xcode

MLRobotControl
• Socket server
• Coordinates between the

communication of robot and
MobileLighting Mac, sends commands
to robot arm

• Written in Python using Rosvita

Calibration

The first step of the process involves taking images with specific coded patterns for intrinsic
and extrinsic calibration, which calculates the intrinsic and extrinsic parameters of the
camera model we are using.

Calibration Boards
For calibration purposes, we use our customized
encoded ArUco boards. ArUco marker is a wide square
marker with black corner and an inner binary matrix
which determines its unique ID, whose correspondence
can be used for calibration purposes. It works
successfully with partially occluded views. We have also
experienced with ChArUco and Chessboard patterns.

Marker
Detection

Intrinsic Calibration

Stereo (Extrinsic) Calibration

Undistortion

Rectification

Lens Distortion

View Point
Disparities

Solved by

Solved by

Fig. 1a: Calibration process

Fig. 1b: Calibration image capture

Daniel Scharstein
Charles A. Dana Professor
of Computer Science

Support through NSF Grant IIS–1718376 is
gratefully acknowledged

Middlebury College Department of
Computer Science

Summer 2019

Image Processing
To get ground truth depth maps of the highest possible quality, we use an image processing pipeline
consisting of 6 steps:

Decode images
Decode the structured lighting images to get a unique pixel code for each point in the scene. This consists
in projecting ever narrower lines in both the x- and y- directions (see fig. 3).

Rectify images
Using the extrinsic calibration parameters generated from calibration, rectify images from adjacent
camera views so that they appear to lie on the same plane.

Disparity match images
Merge the x- and y- decoded images to get a unique pixel code for each point. Then compare the pixel
codes from two views to get a disparity map.

Merge disparity maps
Merge disparity maps produced by different projectors to fill in as many depth values as possible as
accurately as possible.

Reproject merged disparity maps
The merged disparities are used to self-calibrate the projector positions. Once the projector relationships
are known, half-occluded regions can be filled in with disparity values.

Merge2
Put together original disparities, merged disparities, and reprojected disparities to fill in all possible
values.

These steps are all implemented using C++ in MobileLighting Mac.

X-decoded image Y-decoded image

Rectified X-decoded image Rectified Y-decoded image

Initial disparity map

Merged disparity map

Final disparity map

Reprojected disparity map

Ambient image of the scene

Fig. 10: the image processing pipeline

Viewpoint Management with UR5 Robot Arm

In order to have repeatable photo capture from different viewpoints, the smartphone is mounted on the tool head of a UR5 robot arm.
Our main method of communicating with the robot arm is through Rosvita, a third-party robot programming environment based on
ROS (Robot Operating System)

The robot arm can be instructed to move to a certain position in two different ways: joint positions and poses.

Joint Positions:
Since the robot arm has six joints, a position can be specified using an array of six angles, each represents the angle of a joint. This
array gives a unique configuration of the robot arm. As a result, one option to define the viewpoints for the robot arm is to manually
record a fixed number of joint positions and have the robot arm to move through them smoothly.

Poses:
The pose, on the other hand, contains an array with seven numbers. The first three numbers are the cartesian coordinate of the
robot’s tool head. The next four are the quaternions representing the orientations and rotations of the tool head in three dimensions.
Therefore, another more advanced option is to extract the human motion poses data using SteamVR with HTC VIVE tracker, then have
the robot arm to mimic human motion as accurate as possible by passing the recorded data to Rosvita. The viewpoints will then be
selected from the recorded trajectory.

Fig. 5: Smartphone mounting to the tool head

Fig. 6: Robot arm moving to different viewpoints
during scene capture

To imitate the human arm motion and then execute the trajectory on the robot arm, VIVE tracker is used
along with a base station to extract realistic pose information, which will then be passed to the UR5
robot arm through Rosvita. An image containing the information of the recorded trajectory will also be
generated after saving the data. In Rosvita, the viewpoints will be selected according to the tracked
poses.

Fig. 7: The image generated that contains graphs showing the information of the recorded change of Cartesian
Coordinates, change of quaternion, and velocity through time.

Fig. 8: the base station
Fig. 9: the motion tracker and sensor

VIVE Realistic Human Motion Tracking

References

Fig 1b from http://apps.man.poznan.pl/trac/stereovision
Fig 2 from https://iopscience.iop.org/article/10.1088/0957-0233/25/6/065107
Fig 4 from https://link.springer.com/chapter/10.1007/978-1-4471-5520-1_6

Thanks to: Eamon McMahon for his help in mounting new ChArUco boards and Rick James for our WiFi routers.

https://iopscience.iop.org/article/10.1088/0957-0233/25/6/065107
https://link.springer.com/chapter/10.1007/978-1-4471-5520-1_6

